Part Number Hot Search : 
HBL2D AS70SL MCH6342 NU85E AAZ17 S1048 RF0007 MT90882B
Product Description
Full Text Search
 

To Download V23990-P544-C28-PM Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  v23990-p544-*2*-pm flowpim 0 600v/15a vincotech clip-in housing trench fieldstop igbt's for low saturation losses optional w/o brc industrial drives embedded drives v23990-p544-a28-pm v23990-p544-a29-pm V23990-P544-C28-PM v23990-p544-c29-pm t j =25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 1600 v t h =80c 28 t c =80c 37 t h =80c 33 t c =80c 50 maximum junction temperature t j max 150 c inverter transistor t h =80c 20 t c =80c 25 t h =80c 45 t c =80c 69 t sc t j 150c 6 s v cc v ge =15v 360 v v c 175 t j max p tot v ce i c v ge i cpulse v 45 w a t j =t j max vce 1200v, tj top max t p limited by t j max a 600 a t j =t j max collector-emitter break down voltage turn off safe operating area power dissipation per igbt maximum junction temperature short circuit ratings gate-emitter peak voltage target applications t j =t j max t j =t j max p tot t p =10ms 50 hz half sine wave surge forward current t j =25c 200 features flowpim 0 housing schematic dc forward current input rectifier diode a types i2t-value maximum ratings i fav a 2 s i fsm condition 200 a dc collector current repetitive peak collector current w power dissipation per diode i 2 t 20 45 12mm housing 17mm housing copyright vincotech 1 revision: 4
v23990-p544-*2*-pm t j =25c, unless otherwise specified parameter sym bol value unit maximum ratings condition inverter diode t h =80c 18 t c = 80c 23 t h = 80c 3 5 t c = 80c 52 b rake transistor t h =80c 14 t c = 80c 18 t h = 80c 36 t c = 80c 55 t s c t j 150c 1 0 s v cc v ge =15v 36 0 v brake diode t h =80c 1 4 t c = 80c 19 t h = 80c 27 t c = 80c 41 t hermal properties in sulation properties v is t=2s dc vo ltage 4000 v min 12,7 mm min 12,7 mm cti >200 c 600 175 vce 1200v, tj top max t j =t j max 6 0 0 a v a t j max i frm p tot v i f v rrm dc collector current po wer dissipation per igbt gate-emitter peak voltage maximum junction temperature short circuit ratings t j max tu rn off safe operating area p tot w t p limited by t j max t j =t j max 2 0 a 30 a 30 v v ce i cpuls i c collector-emitter break down voltage rep etitive peak collector current repetitive peak forward current power dissipation per diode maximum junction temperature peak repetitive reverse voltage w 175 c dc forward current i f repetitive peak forward current v ge peak repetitive reverse voltage i frm v rrm v 6 0 0 c t j =t j max a m a ximum junction temperature t j max 1 7 5 t j =t j max t p limited by t j max dc fo r ward current power dissipation per diode w a a t p limited by t j max 2 0 t j = t j max p tot t j =t j max -4 0+(tjmax - 25) c storage temperature t stg -40+125 c co mparative tracking index insulation voltage creepage distance t op operation temperature under switching condition cle arance 30 copyright vincotech 2 revision: 4
v23990-p544-*2*-pm parameter sym bol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 0,8 1,26 1,45 tj=125c 1,24 tj=25c 0,92 tj=125c 0,82 tj=25c 11 tj=125c 14 tj=25c tj=145c 1,1 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50m = 1 w/mk 2,1 0 k/w tj=25c 5 5,8 6,5 tj=150c tj=25c 1,1 1,61 1,9 tj=150c 1,81 tj=25c 0,00085 tj=150c tj=25c 300 tj=150c tj=25c 14 tj=150c 13 tj=25c 11 tj=150c 13 tj=25c 127 tj=150c 146 tj=25c 86 tj=150c 86 tj=25c 0,19 tj=150c 0,26 tj=25c 0,31 tj=150c 0,39 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50m = 1 w/mk 2,1 0 k/w tj=25c 1,25 1,79 1,95 tj=150c 1,67 tj=25c 15 tj=150c 17 tj=25c 100 tj=150c 184 tj=25c 0,52 tj=150c 1,01 di(rec)max tj=25c 1448 /dt tj=150c 773 tj=25c 0,10 tj=150c 0,21 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50m = 1 w/mk 2,75 k/w 87 55 15 v 15 0,00021 f=1mhz 0 t r t d(off) v ce =v ge t d(on) v ge(th) t f e on e off erec c ies fall time turn-off delay time i rrm v f c oss c rss integrated gate resistor inverter transistor gate emitter threshold voltage col lector-emitter cut-off current incl. diode value co n ditions characteristic values forward voltage th reshold voltage (for power loss calc. only) slope resistance (for power loss calc. only) v f v to r t input rectifier diode 30 30 30 v v m m a rev erse current i r c mws a/s rgon=16 rgoff=8 20 15 0 1 5 600 15 480 15 15 q rr t rr q gate 15 turn-on energy loss per pulse reverse recovered charge inverter diode peak reverse recovery current rev erse transfer capacitance diode forward voltage gate charge turn-off energy loss per pulse peak rate of fall of recovery current input capacitance output capacitance turn-on delay time rise time gate-emitter leakage current reverse recovery time reverse recovered energy collector-emitter saturation voltage v ce(sat) i ces r gint i ges 15 25 0 300 300 1500 rgon=16 tj=25c non e 860 v a nc na v ma mws ns p f n s 24 tj=25c copyright vincotech 3 revision: 4
v23990-p544-*2*-pm parameter sym bol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max va lue con ditions characteristic values tj=25c 5 5,8 6,5 tj=150c tj=25c 1,1 1,66 1,9 tj=150c 1,87 tj=25c 0,0006 tj=150c tj=25c 300 tj=150c none tj=25c 15 tj=150c 15 tj=25c 11 tj=150c 14 tj=25c 147 tj=150c 163 tj=25c 101 tj=150c 97 tj=25c 0,16 tj=150c 0,22 tj=25c 0,23 tj=150c 0,27 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50m = 1 w/mk 2,6 1 k/w tj=25c 1,25 1,67 1,95 tj=150c 1,61 tj=25c 27 tj=150c tj=25c 10 tj=150c 10 tj=25c 149 tj=150c 208 tj=25c 0,46 tj=150c 0,46 di(rec)max tj=25c 620 /dt tj=150c 340 tj=25c 0,09 tj=150c 0,16 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50m = 1 w/mk 3,5 3 k/w a tj=25c vincotech ntc reference b-value tol. 3% k b (25/100) tj=25c 4000 k tj=25c b-value b (25/50) tol. 3% v v a ns a / s a mws c v % 22000 5 -5 3 , 5 210 tj=25c 17 tj=25c 62 40 10 0,00015 collector-emitter saturation voltage gate emitter threshold voltage brake transistor gate charge in p ut capacitance q gate reverse transfer capacitance output capacitance turn-off energy loss per pulse rise time turn-on delay time gate-emitter leakage current i ces turn-on energy loss per pulse r gint v ge(th) v ce(sat) fall time t d(on) t r turn-off delay time t d(off) t f collector-emitter cut-off incl diode peak rate of fall of recovery current peak reverse recovery current reverse recovered charge i ges 0 15 15 e off 20 c oss e on c ies integrated gate resistor brake diode nc dev iation of r100 480 mw/k power dissipation p mw power dissipation constant rgon=32 rated resistance r re v erse recovery energy ? r/r r100=1486 c rss rgon=32 rgoff=16 v ce =v ge f=1mhz 15 0 0 600 10 300 ma na ns pf mws reverse recovery time rg o n=32 v f i r i rrm diode forward voltage reverse leakage current t rr thermistor q rr e rec rgon=32 10 60 0 1 0 300 tj=25c tc=100c tc=100c tj=25c 551 15 10 25 copyright vincotech 4 revision: 4
v23990-p544-*2*-pm figure 1 output inverter igbt figure 2 output inverter igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at a t t p = 2 5 0 s t p = 25 0 s t j = 25 c t j = 12 5 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 out put inverter igbt figure 4 output inverter fwd typical transfer characteristics typi cal diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at a t t p = 2 5 0 s t p = 25 0 s v ce = 10 v output inverter typical output characteristics 0 10 20 30 40 50 0 1 2 3 4 5 v ce (v) i c (a) 0 3 6 9 12 15 18 0 2 4 6 8 10 12 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 60 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 60 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 5 revision: 4
v23990-p544-*2*-pm figure 5 output inverter igbt figure 6 output inverter igbt typical switching energy losses typi cal switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) wi th an inductive load at with an inductive load at t j = 2 5 /125 c t j = 25 /125 c v ce = 30 0 v v ce = 30 0 v v ge = 15 v v ge = 15 v r gon = 16 i c = 15 a r goff = 8 figur e 7 out put inverter fwd figure 8 output inverter fwd typical reverse recovery energy loss typi cal reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) wi th an inductive load at with an inductive load at t j = 2 5 /125 c t j = 25 /125 c v ce = 30 0 v v ce = 30 0 v v ge = 15 v v ge = 15 v r gon = 16 i c = 15 a output inverter e on high t e off high t e on low t e off low t 0,0 0, 2 0,4 0,6 0,8 0 5 10 15 20 25 30 i c (a) e (mws) e off high t e on high t e on low t e off low t 0,0 0 ,2 0,4 0,6 0,8 1,0 0 30 60 90 120 150 r g ( w ) e (mws) e rec t j = t jmax -25c e rec t j = 25c 0,0 0, 1 0,2 0,3 0,4 0 5 10 15 20 25 30 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0,0 0 ,1 0,2 0,3 0,4 0 30 60 90 120 150 r g ( w ) e (mws) 25 / 125 25 / 125 25 / 125 25 / 125 copyright vincotech 6 re v ision: 4
v23990-p544-*2*-pm figure 9 output inverter igbt figure 10 output inverter igbt typical switching times as a typi cal switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) wi th an inductive load at with an inductive load at t j = 1 2 5 c t j = 12 5 c v ce = 30 0 v v ce = 30 0 v v ge = 15 v v ge = 15 v r gon = 16 i c = 15 a r goff = 8 figur e 11 out put inverter fwd figure 12 output inverter fwd typical reverse recovery time as a typi cal reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(i c ) t rr = f(r gon ) at a t t j = 2 5 /125 c t j = 25 /125 c v ce = 30 0 v v r = 30 0 v v ge = 15 v i f = 15 a r gon = 16 v g e = 15 v output inverter t doff t f t don t r 0,00 0, 01 0,10 1,00 0 5 10 15 20 25 30 i c (a) t ( m s) t j = t jmax -25c t rr t j = 25c t rr 0,0 0, 1 0,2 0,3 0,4 0 30 60 90 120 150 r g on ( w ww w ) t rr ( m s) t doff t f t don t r 0,00 0, 01 0,10 1,00 0 20 40 60 80 100 120 140 r g ( w ww w ) t ( m s) t rr t j = t jmax -25c t j = 25c t rr 0,0 0, 1 0,2 0,3 0,4 0 5 10 15 20 25 30 i c (a) t rr ( m s) 25 / 125 25 / 125 copyright vincotech 7 re v ision: 4
v23990-p544-*2*-pm figure 13 output inverter fwd figure 14 output inverter fwd typical reverse recovery charge as a typi cal reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at a t at t j = 2 5 /125 c t j = 25 /125 c v ce = 30 0 v v r = 30 0 v v ge = 15 v i f = 15 a r gon = 16 v g e = 15 v figure 15 out put inverter fwd figure 16 output inverter fwd typical reverse recovery current as a typi cal reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at a t t j = 2 5 /125 c t j = 25 /125 c v ce = 30 0 v v r = 30 0 v v ge = 15 v i f = 15 a r gon = 16 v g e = 15 v output inverter t j = t jmax - 25c i rrm t j = 25c i rrm 0 5 10 1 5 20 25 0 30 60 90 120 150 r gon ( w ww w ) i rrm (a) q rr t j = t jmax -25c q rr t j = 25c 0,0 0, 3 0,6 0,9 1,2 1,5 0 30 60 90 120 150 r g on ( w ) q rr ( m c) t j = t jmax -25c i rrm t j = 25c i rrm 0 3 6 9 12 1 5 18 0 5 10 15 20 25 30 i c (a) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0,0 0 , 3 0,6 0,9 1,2 1,5 0 5 10 15 20 25 30 i c (a) q rr ( m c) 25 / 125 25 / 125 25 / 125 25 / 125 copyright vincotech 8 re v ision: 4
v23990-p544-*2*-pm figure 17 output inverter fwd figure 18 output inverter fwd typical rate of fall of forward typi cal rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(i c ) di 0 / dt,di rec /dt = f(r gon ) at a t t j = 2 5 /125 c t j = 25 /125 c v ce = 30 0 v v r = 30 0 v v ge = 15 v i f = 15 a r gon = 16 v g e = 15 v figure 19 out put inverter igbt figure 20 output inverter fwd igbt transient thermal impedance fwd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at a t d = t p / t d = t p / t r thjh = 2, 10 k/w r thjh = 2, 75 k/w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) 0,07 3,4e+00 0,06 2,8e+00 0,05 8,2e+00 0,04 6,6e+00 0,25 3,7e-01 0,20 3,0e-01 0,17 7,4e-01 0,14 6,0e-01 0,98 7,6e-02 0,79 6,2e-02 0,78 1,1e-01 0,64 8,7e-02 0,42 1,4e-02 0,34 1,1e-02 0,74 3,1e-02 0,60 2,5e-02 0,19 2,5e-03 0,16 2,1e-03 0,48 5,4e-03 0,39 4,4e-03 0,19 3,0e-04 0,15 2,4e-04 0,24 8,5e-04 0,19 6,9e-04 thermal grease phase change interface thermal grease phase change interface output inverter t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z th-jh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 400 800 1200 1600 2000 0 30 60 90 120 150 r gon ( w ww w ) di rec / dt (a/ m s) di 0 /dt d i rec /dt 0 400 800 1200 1600 2000 0 5 10 15 20 25 30 i c (a) di rec / dt (a/ m m m m s) di rec /dt di 0 / dt 25 / 125 25 / 125 copyright vincotech 9 re v ision: 4
v23990-p544-*2*-pm figure 21 output inverter igbt figure 22 output inverter igbt power dissipation as a coll ector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at a t t j = 1 7 5 c t j = 17 5 c v ge = 15 v figure 23 out put inverter fwd figure 24 output inverter fwd power dissipation as a forw ard current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at a t t j = 1 7 5 c t j = 17 5 c output inverter 0 20 40 60 80 100 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 30 0 50 100 150 200 t h ( o c) i c (a) 0 10 20 30 40 50 60 70 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 30 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 10 revision: 4
v23990-p544-*2*-pm figure 25 output inverter igbt figure 26 output inverter igbt safe operating area as a function gat e voltage vs gate charge of collector-emitter voltage i c = f(v ce ) v ge = f(q ge ) at a t d = single pulse i c = 1 5 a t h = 80 oc v ge = 15 v t j = t jmax oc figur e 27 out put inverter igbt figure 28 output inverter igbt short circuit withstand time as a function of typical s hort circuit collector current as a function of gate-emitter voltage gate-emitter voltage t sc = f(v ge ) v ge = f(q ge ) at a t v ce = 6 0 0 v v ce 60 0 v t j 17 5 oc t j = 17 5 oc output inverter v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 10us 100us 1ms 10ms 100ms dc 10 0 10 3 0 2 4 6 8 10 12 14 16 18 0 20 40 60 80 100 120 q g (nc) v ge (v) 120v 480v 0 2 4 6 8 10 12 14 10 11 12 13 14 15 v ge (v) t sc (s) 0 50 100 150 200 250 12 14 16 18 20 v ge (v) i c (sc) copyright vincotech 11 revision: 4
v23990-p544-*2*-pm figure 29 igbt reverse bias safe operating area i c = f(v ce ) at t j = t jmax -25 o c u c cminus =u ccplus switching mode : 3 level switching 0 10 20 30 40 50 0 100 200 300 400 500 600 700 v ce (v) i c (a) i c max v ce max i c m odule i c chip copyright vincotech 12 revision: 4
v23990-p544-*2*-pm figure 1 brake igbt figure 2 brake igbt typical output characteristics typi cal output characteristics i c = f(v ce ) i c = f(v ce ) at a t t p = 2 5 0 s t p = 25 0 s t j = 25 c t j = 12 5 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 bra ke igbt figure 4 brake fwd typical transfer characteristics typi cal diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at a t t p = 2 5 0 s t p = 25 0 s v ce = 10 v brake 0 5 10 15 20 25 30 35 0 1 2 3 4 5 v ce (v) i c (a) 0 2 4 6 8 10 12 0 3 6 9 12 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 0 1 2 3 4 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 5 10 15 20 25 30 35 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 13 revision: 4
v23990-p544-*2*-pm figure 5 brake igbt figure 6 brake igbt typical switching energy losses typi cal switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) wi th an inductive load at with an inductive load at t j = 2 5 /125 c t j = 25 /125 c v ce = 30 0 v v ce = 30 0 v v ge = 15 v v ge = 15 v r gon = 32 i c = 10 a r goff = 16 fi gure 7 bra ke fwd figure 8 brake fwd typical reverse recovery energy loss typi cal reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) wi th an inductive load at with an inductive load at t j = 2 5 /125 c t j = 25 /125 c v ce = 30 0 v v ce = 30 0 v v ge = 15 v v ge = 15 v r gon = 32 i c = 10 a brake t j = t jmax - 25c e rec t j = 25c e rec 0,00 0 ,05 0,10 0,15 0,20 0,25 0 5 10 15 20 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e r ec 0,00 0, 05 0,10 0,15 0,20 0 50 100 150 200 250 300 r g ( w ww w ) e (mws) t j = t jmax -25c e off e on t j = 25c e on e off 0,0 0, 1 0,2 0,3 0,4 0,5 0,6 0 5 10 15 20 i c (a) e (mws) e off t j = t jmax -25c e o n e on e off t j = 25c 0,0 0 , 2 0,4 0,6 0,8 0 50 100 150 200 250 300 r g ( w ww w ) e (mws) 25 / 125 25 / 125 25 / 125 25 / 125 copyright vincotech 14 r e vision: 4
v23990-p544-*2*-pm figure 9 brake igbt figure 10 brake igbt typical switching times as a typi cal switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) wi th an inductive load at with an inductive load at t j = 2 5 /125 c t j = 25 /125 c v ce = 30 0 v v ce = 30 0 v v ge = 15 v v ge = 15 v r gon = 32 i c = 10 a r goff = 16 fi gure 11 bra ke igbt figure 12 brake fwd igbt transient thermal impedance fwd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at d = tp / t at d = tp / t r thjh = 2 , 61 k/w r thjh = 0, 60 k/w r thjh = 3, 53 k/w r thjh = 1, 27 k/w thermal grease phase change interface thermal grease phase change interface brake t doff t f t don t r 0,00 0, 01 0,10 1,00 0 5 10 15 20 i c (a) t ( m s) t doff t f t don t r 0,00 0, 01 0,10 1,00 0 50 100 150 200 250 300 r g ( w ww w ) t ( m s) t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 copyright vincotech 1 5 r evision: 4
v23990-p544-*2*-pm figure 13 brake igbt figure 14 brake igbt power dissipation as a coll ector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at a t t j = 1 7 5 oc t j = 17 5 oc v ge = 15 v figure 15 bra ke fwd figure 16 brake fwd power dissipation as a forw ard current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at a t t j = 1 7 5 oc t j = 17 5 oc brake 0 10 20 30 40 50 60 70 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 0 50 100 150 200 t h ( o c) i c (a) 0 10 20 30 40 50 0 50 100 150 200 th ( o c) p tot (w) 0 5 10 15 20 25 0 50 100 150 200 th ( o c) i f (a) copyright vincotech 16 revision: 4
v23990-p544-*2*-pm figure 1 rectifier diode figure 2 rectifier diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at a t t p = 2 5 0 s d = t p / t r thjh = 2, 1 k/w figure 3 rec tifier diode figure 4 rectifier diode power dissipation as a forw ard current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at a t t j = 1 5 0 oc t j = 15 0 oc input rectifier bridge 0 20 40 60 80 100 120 0,0 0,5 1,0 1,5 2,0 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 20 40 60 80 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 17 revision: 4
v23990-p544-*2*-pm figure 1 thermistor figure 2 thermistor typical ntc characteristic typi cal ntc resistance values as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 4 0 00 8000 12000 16000 20000 24000 25 50 75 100 125 t (c) r/  [ ] w = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - 25 100 /25 11 25 )( tt b ertr copyright vincotech 18 revision: 4
v23990-p544-*2*-pm t j 125 c r gon 32  r g off 16  figur e 1 out put inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of tdon, t eon (t eoff = integrating time for e off ) ( t eon = integrating time for e on ) v g e (0%) = 0 v v g e (0%) = 0 v v g e (100%) = 15 v v ge (100%) = 15 v v c (100%) = 30 0 v v c (100%) = 30 0 v i c (100%) = 15 a i c (100%) = 15 a t doff = 0, 21 s t don = 0, 02 s t eoff = 0, 44 s t eon = 0, 20 s figure 3 out put inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 30 0 v v c (100%) = 30 0 v i c (100%) = 15 a i c (100%) = 15 a t f = 0, 09 s t r = 0, 02 s switching definitions output inverter general conditions = = = i c 1% v ce 90% v ge 90% -50 -2 5 0 25 50 75 100 125 -0,1 0 0,1 0,2 0,3 0,4 0,5 time (us) % t doff t e off v ce i c v ge i c 10% v ge 10% t don v ce 3% -40 0 40 8 0 120 160 200 2,9 3 3,1 3,2 3,3 time(us) % i c v ce t e on v ge fitted i c10% i c 90% i c 60% i c 40% -50 0 50 1 00 150 0,1 0,15 0,2 0,25 0,3 0,35 0,4 time (us) % v ce i c t f i c 10% i c 90% -50 0 50 1 00 150 200 3 3,05 3,1 3,15 3,2 time(us) % t r v ce i c copyright vincotech 1 9 r evision: 4
v23990-p544-*2*-pm figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p o ff (100%) = 4, 47 kw p on (100%) = 4, 47 kw e off (100%) = 0, 40 mj e on (100%) = 0, 34 mj t eoff = 0, 44 s t eon = 0, 20 s figure 7 out put inverter fwd figure 8 output inverter igbt gate voltage vs gate charge (measured) turn- off switching waveforms & definition of t rr v g eoff = 0 v v d (100%) = 30 0 v v geon = 15 v i d (100%) = 15 a v c (100%) = 30 0 v i rrm (100%) = 14 a i c (100%) = 15 a t rr = 0, 21 s q g = 10 5,74 nc switching definitions output inverter i c 1% v ge 90% -25 0 2 5 5 0 75 100 125 -0,1 0 0,1 0,2 0,3 0,4 0,5 time (us) % p off e o ff t eoff v ce 3% v ge 10% -50 0 50 1 00 150 200 2,9 3 3,1 3,2 3,3 time(us) % p on e on t eon -5 0 5 10 15 20 -40 -20 0 20 40 60 80 100 120 qg (nc) v ge (v) i rrm 10% i rrm 90% i rrm 100% t rr -120 -8 0 -40 0 40 80 120 2,9 3 3,1 3,2 3,3 3,4 3,5 time(us) % i d v d fitted copyright vincotech 2 0 r evision: 4
v23990-p544-*2*-pm figure 9 output inverter fwd figure 10 output inverter fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) ( t erec = integrating time for e rec ) i d (100%) = 1 5 a p rec (100%) = 4, 47 kw q rr (100%) = 1, 01 c e rec (100%) = 0, 20 mj t qrr = 0, 49 s t erec = 0, 49 s switching definitions output inverter t qrr -100 - 5 0 0 50 100 150 2,9 3,1 3,3 3,5 3,7 % i d q rr time(us) -25 0 25 50 75 100 125 2,9 3,1 3,3 3,5 3,7 time(us) % p rec e rec t erec copyright vincotech 2 1 r evision: 4
v23990-p544-*2*-pm in datamatrix as p544-a28 without thermal paste 17mm 2 clips housing v23990-p544-a29-pm p544-a29 p544-a29 p544-c28 p544-c29 7 10.8 0 8 8.1 0 9 5.4 0 10 2.7 0 11 0 0 12 0 19.8 13 0 22.5 14 7.5 19.8 15 7.5 22.5 16 15 19.8 17 15 22.5 18 22.8 22.5 19 25.5 22.5 20 33.5 22.5 21 33.5 15 22 33.5 7.5 23 33.5 0 p544-c29 pinout ordering code & marking ordering code and marking - outline - pinout version without thermal paste 12mm 2 clips housing without thermal paste 12mm 2 clips housing in packaging barcode as ordering code v23990-p544-a28-pm V23990-P544-C28-PM v23990-p544-c29-pm without thermal paste 17mm 2 clips housing p544-a28 p544-c28 copyright vincotech 22 revision: 4
v23990-p544-*2*-pm disclaimer lif e support policy as used herein: the information given in this datasheet describes the type of component and does not represent assured characteristics. for tested values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright vincotech 23 revision: 4


▲Up To Search▲   

 
Price & Availability of V23990-P544-C28-PM

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X